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Magnetoplasmon-phonon coupling in semiconductor 
quantum wells 
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Sektion Physik der Friedrich-Schiller-Universitat Jena, Max-Wien-Platz 1, Jena, D D R -  
6900, German Democratic Republic 

Received 7 August 1989, in final form 21 May 1990 

Abstract. The collective excitations of a double heterostructure in the presence of a magnetic 
field are examined in detail. The polarization function of the quasi-two-dimensional electron 
gas in the presence of a perpendicular quantizing magnetic field is calculated within various 
long-wave approximations and in the random-phase approximation. Using these polar- 
ization functions the dispersion curves of the coupled intra- and inter-subband mag- 
netoplasmon-phonons are calculated and plotted in graphical form. The calculation of the 
dispersion relation is done for GaAs-Ga, ~ ,AI,As double heterostructures and include both 
quantum size effects and the correct spectrum of the long-wave optical phonons. In this 
paper the higher resonances of the quasi-two-dimensional magnetoplasma, the Bernstein 
modes, are also investigated. It is shown that the intra- and inter-subband magnetoplasmon- 
phonons are free of Landau damping for finite perpendicular quantizing magnetic fields. 

1. Introduction 

In recent years there has been a great deal of interest on collective excitations in 
semiconductor microstructures such as heterostructures, quantum wells and super- 
lattices. It is possible to produce these systems, which are typified by heterointerfaces 
between the different semiconductors, due to the recent advent of novel epitaxial growth 
techniques. In modulation-doped systems the electrons form a gas with a dimension 
between two and three. In simple quantum wells the electron motion is quasi-free parallel 
to the heterointerfaces, but confined within a narrow channel by a one-dimensional 
potential. Because the width of this channel is usually of the order of the de Broglie 
wavelength of the electrons, and at low temperatures is much smaller than the elastic 
mean free path of the electrons, they form a quasi-two-dimensional electron gas (Q2DEG), 
i.e. the spectrum of the electrons consists of discrete subbands. This is true because the 
subband spacing is much larger than the energy broadening induced by scattering 
processes. 

If a magnetic field is applied perpendicular to the heterointerfaces, the motion of the 
electrons of the Q ~ D E G  is completely quantized. The discreteness of the eigenvalue 
spectrum is essential for the occurrence of the quantum Hall effect. Further, this 
complete quantized situation for the electrons of the Q2DEG results in novel properties 
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Figure 1. Schematic diagram of the geometry of a 
double heterostructure. 
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of the collective excitations, for example the quantized undamping of helicon waves 
(Wendler and Kaganov 1986a, b,  1987). 

It is well known that the electron gas can support charge-density oscillations, plas- 
mons, organized by long-range Coulomb fields. In the presence of a magnetic field the 
corresponding collective excitations are magnetoplasmons. Magnetoplasmons have 
been of considerable interest in the past few years. For a strict 2DEG magnetoplasmons 
were investigated theoretically by Chaplik (1972) within a local approximation. Chiu 
and Quinn (1974) considered the effect of retardation on the modes and Horing and 
Yildiz (1976) and Glasser (1983) calculated the polarization function of the 2D mag- 
netoplasma within the random-phase approximation. More recently 2D magnetoplas- 
mons and magnetic excitons have been studied in the Hartree-Fock approximation 
(Lerner and Lozovik 1978, Bychkov et a1 1981, Kallin and Halperin 1984, MacDonald 
1985). The previous studies have been restricted to integral filling factors of the Landau 
levels, whereas the case of non-integral filling factors was investigated by Oji and 
MacDonald (1986a). Magnetoplasmons are also investigated in detail for superlattices 
(Kobayashi et a1 1975, Das Sarma and Quinn 1982, Bloss and Brody 1982, Tselis and 
Quinn 1984a, b,  Gasser and Tauber 1987). Horing and Yildiz (1986) analysed in RPA the 
dynamic non-local longitudinal dielectric response of a magnetoplasma confined within 
a layer of finite thickness. But the results obtained were on a semi-classical level, because 
the boundary condition of specular reflection was used for the electrons (classical infinite 
barrier model). Q ~ D  magnetoplasmons were investigated experimentally by far-infrared 
spectroscopy on Si-Mos systems (Theis et a1 1977, Mohr and Heitmann 1982) and on 
GaAs-Gal _,Al,As heterostructures (Batke et a1 1985,1986). 

Most of the semiconductor microstructures are made from the weakly polar com- 
pound semiconductor materials of the III-V series. In polar semiconductors long-wave 
optical lattice vibrations are accompanied by macroscopic electric fields and hence, they 
couple to the electrons of the Q2DEG. This is the Frohlich type of electron-phonon 
interaction which leads to a strong coupling between the magnetoplasmons and the long- 
wave optical phonons, if their frequencies are comparable. Magnetoplasmon-phonon 
coupling is investigated by Tselis and Quinn (1984b) for a superlattice, using a long- 
wavelength approximation of the polarization function, and by Oji and MacDonald 
(1986b), using the RPA polarization function. In these works only the coupling to the 
ordinary bulk 3~ longitudinal-optical (LO) phonons is treated. But a real semiconductor 
microstructure is a layered system and hence the spectrum of the optical phonons 
interacting with the electrons is altered by the interfaces of the system (Wendler 1985). 
The ordinary dispersion-free LO phonons are changed to be modes confined in each 
individual layer, having electric fields with vanishing influence at the interfaces, implying 
that 3~ wavevectors smaller than / q /  = n / a  (where a is the layer thickness) are forbidden. 
And further, new states, interface phonons, occur in the spectrum of the optical phonons 
with fields mainly localized at the interfaces of the system and decaying exponentially 
from them. 
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In recent papers (Wendler and Pechstedt l986,1987a, b, Wendler 1988, Wendler et 
a1 1988, 1990, Wendler and Grigoryan 1989) we have studied the plasmon-phonon 
coupling in heterostructures and quantum wells. The emphasis of this paper is to 
generalize our previous work to the case of an applied homogeneous magnetic field. We 
represent a RPA calculation of coupled magnetoplasmon-phonons in double hetero- 
structures including both quantum size effects and the correct spectrum of the long-wave 
optical phonons. We also investigate the higher resonances of the QZD magnetoplasma, 
the Bernstein modes, and their interaction with both the principal magnetoplasmons 
and the optical phonons. 

2. Electronic subband structure 

The DHS (figure 1) which is under consideration in the present paper consists of a smaller- 
gap semiconductor ( v  = 1) for a > z > 0 (for instance GaAs), which is symmetrically 
embedded between a wider-gap semiconductor ( v  = 2 )  for z > a and 0 > z (for instance 
Ga,-xAl,As). 

The single-particle Hamiltonian in effective-mass approximation for the electrons 
of the QZDEG in the presence of a quantizing homogeneous DC magnetic field B = 
(0, 0, B ) ,  applied perpendicularly to the heterointerfaces is given by 

Here, A is the vector potential with B = V X A and Vcff(z) is the effective confining 
potential resulting from the conduction-band offset at the heterointerfaces and from the 
charges in the system. pB = eh/(2mo) denotes Bohr's magneton, mo the free electron 
mass in contrast to the effective electron mass m ,  g* the effective spin-splitting (Land&) 
factor and U, denotes the Pauli matrix. With the use of the Landau gaugeA = (0, x B ,  0) 
the eigenvalue problem of the Hamiltonian (1) becomes equivalent to two separate 
equations, one for the size quantization and one for the magnetic quantization. Accord- 
ing to the symmetry properties of the system the single-particle wavefunction is 

(xlKNkp) = W K N k , a ( X )  = W L y )  e'kkvN(X + k y G ) Q , K ( 4 X u  ( 2 )  

(3) 

and for the one-electron energy follows with (1) and ( 2 ) :  

& K N o  = & K  f &,jf + g*pBBa 
where 1, = (h/eB)'i2 is the magnetic length, xo are the two spin eigenfunctions for spin- 
up and spin-down along the z axis and U takes the values +1 and -1. We have applied 
Born-von Karman periodic boundary conditions in the y direction with unit length L,. 

The effective potential Veff(z) affects the electron motion in z direction. It causes 
their spatial confinement within a narrow channel, which has a width of the same order 
as the de Broglie wavelength of the electrons. This leads to a sequence of subbands (size 
quantization). The subband energies are determined by solving the one-dimensional 
Schrodinger equation for the envelope wavefunction Q, K ( ~ )  of an electron in the Kth 
subband. This Schrodinger equation follows from equations (1)-(3) and reads: 

For the analytic and numerical calculations in the following sections we are interested in 
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the simplest model potenti-al neglecting band-bending and exchange-correlation effects 
due to the charges in the system, and infinite barriers are assumed for the quantum well: 

Within this simple infinite square well potential model the normalized envelope wave- 
function is given by 

1- 

and the subband energies are 

The magnetic field applied in 
plane (magnetic quantization) 

1 ) 2 .  (7) 

the z direction affects the electron motion in the x-y 
Hence, using the above-mentioned Landau gauge the 

eigenvalue problem is that of a one-dimensional harmonic oscillator with a displaced 
centre X = -1 i k ] .  Then the corresponding eigenfunctions are: 

G h ( x  + lik,) = [1/(2VN!n1’210)1’2] exp[-(1/21i)(x + 1;k,)’]H,(l/l~)(x + @,) 

and the eigenvalues are given by 
(8) 

(9) E N  = ho,(N + i) N = 0 , 1 , 2 , .  . . 
where o, = eB/m is the cyclotron frequency and H N ( 5 )  is the Hermite polynomial. 

are independent of the quantum number k,  each 
energy level is degenerate. For a finite system the allowed values of the quantum number 
k ,  are separated by 2n/L, so that the total number N L  of k ,  values belonging to the same 
energy & K N a  is: 

Since the energy eigenvalues 

N L  = (eB/h)A A = L,L,. (10) 
The degeneracy factor is identical to the number of flux quanta (Go = h/e: magnetic flux 
quantum) within the area A .  The manifold states associated with the quantum numbers 
{Nu} are referred to as Landau levels. Thus, the quantum number k ,  (or the centre 
coordinate X) labels all the states within one Landau level. 

The application of this quantum description to real 2D electronic systems is limited 
by the appearance of scattering processes. Scattering processes result in a broadening 
of the Landau levels. Hence, the quantum description is valid if this energy broadening, 
AE - f i / t  (t is the collision time of the electrons), is much smaller than the spacing f iw,  
between the Landau levels. Further, we note that in microstructures composed of 
111-Vsemiconductors and magnetic fields in the order of 2-5 T the radius of the cyclotron 
motion is comparable to the de Broglie wavelength and it is small in comparison with 
the mean free path 1 = u F t  (-1000 nm for a typical semiconductor; u F  = f ikF/m is the 
Fermi velocity; kF = (2nn2DEG)1’2 the 2D Fermi wavevector) of the electrons. Following 
this we assume in this paper that the magnetic fields are quantizing magnetic fields. 

Many of the unusual properties of the discussed system are due to two important 
facts. One is that Landau levels have a macroscopic degeneracy associated with the 
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centre coordinate of the cyclotron motion. The other is connected with the fact that we 
have a completely quantized situation in the QZDEG in the presence of a perpendicular 
magnetic field, since there is no continuum of extended states associated with kinetic 
energy motion parallel to the magnetic field, so there is no continuum aspect to the 
spectrum of uncorrelated electron states. Such an energy spectrum consisting of energy 
levels separated by gaps is essential for the quantum Hall effect. 

3. The polarization function of the QZD magnetoplasma 

3.1. The dynamically screened potential 

The electrons of the QZDEG can be scattered in two ways, by electron-electron interaction 
and, since the QZDEG is embedded within a polar semiconductor, by electron-phonon 
interaction. In the first case the scattering process is mediated by the bare (or direct) 
Coulomb interaction, while in the second case the electrons interact by sending a long- 
wave phonon from one electron to the other. Since the Q2DEG is polarizable, this 
interaction is screened and the bare interaction potential W(x, x’ 1 w ) ,  which is the sum 
of the above mentioned two contributions, must be replaced by the screened interaction 
potential Wsc (x, x’ I U) between the electrons. This screened interaction potential obeys 
the integral equation (Mahan 1972a) 

Wsc(x,x’lw) = W(x,x’/w) + j d 3 x ” j d 3 x ’ ”  W(x,x”)w) PH(x”,x’“Io)  

x WSC(X”’, x’ 1 w )  (11) 
where PH(x, x‘ I w )  is the proper polarization function of the Q2D magnetoplasma in the 
presence of a perpendicular magnetic field. The dynamically screened interaction poten- 
tial contains all information necessary in order to describe the collective excitations of 
this system. 

At first, however, we discuss the properties of the polarization function. In general, 
the polarization function contains both internal Coulomb and phonon lines. In this paper 
we are concerned with the random-phase approximation of the polarization function 
PH(x, x’ I U), which is given by the single-loop approximation: 

with %(O)(x, x‘ 1 i v , )  the unperturbed single-particle temperature Green’s function of an 
electron. This Green’s function is given by 

Here, v, = (2n + l ) x /Ph  and w ,  = (2n)n/ph are Matsubara frequencies, where n is an 
integral number, /3 = l / k B T  and cKN = e K N  - ,U with ,U the chemical potential. The 
retarded polarization function is obtained by the usual analytic continuation 
io, + o + i s ,  6 + 0’. For simplicity we have assumed the spin-splitting factor g* to be 
zero but the spin degeneracy is included. This is a reasonable approximation because in 
the case of GaAs the spin-splitting is at least five times smaller than the Landau level 
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separation even if many-electron enhancement of the g*-factor is included (Nicholas et 
a 1  1988). 

By performing the summation over the Matsubara frequencies one derives 

with 

and 

where xIl and 411 are the two-dimensional position and wavevector in the x-y plane. In 
equation (16) nF denotes the Fermi occupancy factor for the electrons and JNN'(ql , )  is 
defined by 

J N N ' ( 4 1 l )  = j- dx exP(iqxx)@;(x + q y ~ ~ ) @ N W .  (17) 

A straightforward calculation shows that IJNN,(qll) l 2  can be expressed as 

with N I  = max(N, N ' )  and N ,  = min(N, A"). Lc(E)  is the associated Laguerre poly- 
nomial. Using (14) to (16) the integral equation (11) can be rewritten to an algebraic 
one in the 'subband space' (Wendler and Pechstedt 1986) 

W % , K 2 K 3 K 4 ( Q I I  > U) = W K I K * K ? K 4 ( Q l l  3 w> 

+ W K 1 K * L ' L ( 4 1 1 ,  PLIL'(411, o ) W L ' K 3 K 4 ( 4 / 1 >  (19) 
11' 

In this equation the bare interaction potential is given by 

W K I K 2 K 3 K 4 ( 4 1 /  > 0) = V2K,K2K,K4(41/)  + V % h l K ? K 3 K 4 ( 4 / /  3 w )  (20) 

where 

is the phonon-mediated equivalent electron-electron interaction potential and 
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describes the bare electron-electron (direct Coulomb) interaction. wj(qlI) is the dis- 
persion relation of the jth long-wave optical phonon mode in the layered structure and 
the vertex function MkKr(qll)  is given by 

Here r,(qlj7 z )  is the coupling function (Wendler 1985) describing the coupling strength 
of a single electron with the jth optical phonon mode of the DHS and it is discussed in 
detail by Wendler and Pechstedt (1987b) for a DHS and by Wendler et a1 (1990j for a 
heterostructure. 

In equation (22) the bare electron-electron interaction potential is screened by the 
high-energy electronic excitations across the band gap, represented by the optical 
dielectric constant of the semiconductor containing the Q ~ D  magnetoplasma. We omit 
in the bare interaction potential the classical image potential in the electron-electron 
interaction, which arises by solving Poisson’s equation in a layered structure. The reason 
is that we take into account the phonon-mediated interaction potential, which gives the 
major contribution to the classical image potential on a quantum mechanical level 
(Mahan 1972b, Evans and Mills 1973). The remaining terms are mysterious and its 
neglect is a good approximation because of its very small magnitude. 

In the following we take into account the assumption of the electric quantum limit. 
That means, in equilibrium the electrons only occupy the lowest (K = 0) subband. 
According to this assumption the matrix polarization function PEKt has at zero tem- 
perature only the non-vanishing elements P g  , P& and p&. In this case equation (15) 
can be written in the form: 

PH(qll; z,z’Iw) = E T , o ( z ) T p o ( ~ ’ > T K ( z ’ ~ ~ K ( ~ ) x ~ ~ ~ ~ ~ 7  0) (24) 
K 

with 

The polarization function x#(ql1, w )  contains two physically different contributions: 

(i) the intrasubband contribution for K = 0 arising from an electron excitation above 
the Fermi sea within the lowest subband, and 

(ii) the intersubband contribution for K > 0 arising from an electron excitation to 
higher subbands. 

Within the electric quantum limit it is possible to simplify equation (19) by setting K2 = 
K 4  = 0 in the interaction potentials, and then using (25) gives 

The condition for the existence of collective excitations, the dispersion relation, follows 
from equation (26) under the condition that V i K r  = 0 while WEKj # 0. VC,, corresponds 
to the potential V&, given in (22) with E, ,  = 1. The resulting dispersion relation has the 
form: 

W 8 . L  - WKL(qII9 4 X % / l ,  w>1 = 0. (27) 
It was shown (Wendler et a1 1988) that according to the symmetry properties of the DHS 
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the bare interaction potential has the following properties: W ,  # 0, WI1 # 0, Wlo = 
WO, = 0, W2, # 0, W2, = WO, # 0 and W2, = WI2 = 0. Because of the large energetic 
separation between the 0th and the 2nd subband at the usual layer thicknesses of a 
DHS the contribution of W2, is very weak in magnitude. Therefore it is a very good 
approximation to neglect the off-diagonal elements in (27). This means that intra- and 
intersubband modes are decoupled. Within this approximation equation (27) takes the 
form: 

WKk(qlI>o> - x!i!(qIl? 0) = 0. (28) 

Since the dispersion relation contains long-wave optical phonons (both interface’and LO 
phonons) as well as charge-density excitations of the Q ~ D  magnetoplasma, it describes: 

(i) coupled intrasubband magnetoplasmon-phonon modes if K = 0, and 
(ii) coupled intersubband magnetoplasmon-phonon modes if K > 0. 

A very interesting result is obtained if we consider the dispersion relation (28) in the 
limit a + 0, i.e. a strict ~ D E G  embedded in the semiconductor v = 2. In this limit all the 
electrons occupy only the lowest K = 0 subband since the layer is so thin that the energy 
differences between the different subbands are very large. Further, electron transitions 
between the lowest and higher subbands cannot take place at low temperatures. In this 
case the de Broglie wavelength of the electrons is much larger than the layer thickness. 
Considering this physical situation it is possible to derive the following relations: 

where we have replaced E , ]  by E,* because for a + 0 the underground dielectric constant 
is now E , ~ ,  and further 

lim M&- (411) = 0. (33) 
a- 0 

Herein L1, A+ and S k  denote the different types of long-wave optical phonons, i.e. 
the LO phonons of the GaAs layer (Ll) ,  the antisymmetric (A?) and the symmetric 
(S+) interface phonons. These vertex functions are explicitly given by Wendler and 
Pechstedt (1987b). Using these relations for the vertex functions of the optical phonons 
in the definition of the electron-phonon potential we obtain 

Herein wL2 and con are the longitudinal and transverse (LO and TO) phonon frequencies 
and E , ~  and E , ~  are the optical and the static dielectric constant of the semiconductor 
material forming the barriers of the DHS. Equation (34) represents the electron-phonon 
interaction potential for the interaction of an electron with 3D bulk LO phonons of 
medium v = 2 (Wendler and Pechstedt 1987b). Hence, in the strict 2D limit the electrons 
only interact with these optical phonons. 
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If one compares equation (28) with the corresponding equation without magnetic 
field (Wendler and Pechstedt 1986), it can be seen that the difference between these two 
cases is only given by the different polarization functions. Hence, for the calculation of 
the dispersion relation, a detailed knowledge of the polarization function is necessary. 

3.2. Intrasubband contribution of the polarization function 

According to (25 )  we found by a little algebra from (16) the retarded polarization 
function for K = 0 in the form: 

(35 )  
This polarization function inserted in the dispersion relation (28) describes the coupled 
intrasubband magnetoplasmon-phonons, where the S = 1 term of (35 )  is the con- 
tribution of the principal intrasubband magnetoplasmon. The higher resonances in (35 )  
are the contributions of the intrasubband Bernstein modes which couple with the 
principal intrasubband magnetoplasmon and with the long-wave optical phonons. The 
imaginary part of the polarization function is found from (35) :  

x [6(w - So,) - 6(w + Sw,)]. (36 )  
This result means that the coupled intrasubband magnetoplasmon-phonons could only 
be damped at the frequencies w = ~ S W , .  But at these certain frequencies 
Re xf(qI1, w )  has poles and therefore no root of the dispersion relation (28) can lie on 
any multiple of w,. Hence, there is no Landau damping of the coupled intrasubband 
modes for all temperatures within the RPA for finite perpendicular quantizing magnetic 
fields. However, it is important to note that in the zero magnetic field limit the intra- 
subband Bernstein modes lose their identity as distinct plasmon resonances, and only 
the intrasubband plasmon remains, which now become Landau damped in the single- 
particle intrasubband continuum (Wendler 1988). 

For further discussion of the properties of intrasubband magnetoplasmon-phonons 
we restrict our attention to some approximations of the polarization function (35 )  at T = 
0 K. At first we consider the long-wave approximation by expanding ( J N + S , N ( q ~ ~ ) 1 2  to 
O(q1f). In this case one has to take only the S = 1 and S = 2 terms, and carrying out the 
summation over the Landau levels ( N )  in (35 ) ,  one obtains (see appendix) 

where n2DEG is the sheet carrier concentration of the QZDEG (electron concentration per 
unit area). Within this long-wave approximation it is very simple to show that in the limit 
B -+ 0 the intrasubband Bernstein modes lose their identity. From equation (37 )  it 
follows: 

lim xf(q11,w) = (nZDEG4i/mw2)11 + (2uh%)/m21.  (38 )  
E+ 0 

Equation (38 )  represents the well known result of the intrasubband contribution to the 
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polarization function without any magnetic field (compare for instance with (67) in 
Wendler and Pechstedt 1986). Hence, (38) describes only one mode, the intrasubband 
plasmon. 

As a further approximation we consider the polarization function for the case where 
only the lowest Landau level is filled. In this case the full RPA polarization function for 
T = 0 K is given by the analytic expression: 

If one includes only the contribution to the polarization function from transitions 
between the N = 0 and the N = 1 , 2  Landau levels, the full RPA result is given by: 

Without the last term in the brackets this polarization function is discussed by Oji 
and MacDonald (1986b), because they include only the contribution from transitions 
between the N = 0 and the N = 1 Landau levels. By expanding the exponential function 
in (40) and using the fact that only the lowest Landau level is filled (o,/fin = nZDEG/m) 
one of course recovers (37). 

3.3.  Intersubband contribution of the polarization function 

For the intersubband contribution of the polarization function we found for K > 0 from 
(16) and (25): 

where we have used the condition of the electric quantum limit by nF(gK,) = 0 for K > 0. 
In equation (41) Q K o  = ( E ~  - ~ ~ ) / f i  is the subband separation frequency. The polar- 

ization function (41) inserted in the dispersion relation (28) describes the coupled 
intersubband magnetoplasmon-phonons. The term of (41) with S = 0 is the contribution 
of the principal intersubband magnetoplasmon and the higher resonances (S > 0) are 
the contributions of the intersubband Bernstein modes which couple with both the 
principal intersubband magnetoplasmon as well as with the long-wave optical phonons. 
The imaginary part of the polarization function is found from (41): 

Analogous to the case of the intrasubband modes, the coupled intersubband mag- 
netoplasmon-phonons can only be damped at the particular frequencies w = 
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& l Q K o  - Socl  and o = + Soc) .  But at these certain frequencies ReXi(q11, U) 
has poles and therefore the coupled intersubband modes are not Landau damped within 
the RPA for finite perpendicular quantizing magnetic fields. 

The long-wave approximation of the polarization function (41) at T = 0 K is obtained 
by expanding lJNNj(qil)12. Expanding to O(qf )  we found (see appendix): 

Another useful approximation of the polarization function is obtained in the case where 
only the lowest Landau level is filled. In this case nF(gKN) is not zero only for K = N = 
0 (note that we are working within the electric quantum limit at T = 0 K) and one 
immediately obtains from (41) the full RPA result: 

By including only the contributions from transitions between the N = 0 ( K  = 0) and the 
N = 0, 1, 2 ( K  > 0) Landau levels and expanding the exponential function one again 
recovers the long-wave approximation (43), but without the terms -(nzDEGdi - 1) due 
to the fact that only the lowest Landau level is filled. 

4. Collective excitations 

The dispersion relation of the coupled magnetoplasmon-phonons is given by (28) with 
the polarization functions of sections 3.2 and 3.3. 

Without any coupling to the magnetoplasmons the spectrum of the long-wave optical 
phonons of the DHS is that of dispersion-free LO phonons wLv which are confined modes 
in each individual layer v ,  and of the interface phonons. For the single-layer geometry 
of the DHS there are two types of interface modes (Fuchs and Kliewer 1965): 

(i) antisymmetric modes wAt(qll), and 
(ii) symmetric modes wst(qll). 
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The symmetry properties of the DHS provide the selection rules that even parity modes 
only induce transitions of electrons between subbands with equal parity and odd parity 
modes only induce transitions of electrons between subbands with opposite parity. 
Notice that the interaction of the electrons confined inside the GaAs layer is zero with 
the LO phonons of Ga0,7sA10.2sA~, because the electric field associated with this mode is 
zero inside the GaAs layer and at the interfaces. 

For numerical work we have chosen a Ga0,75Alo.25As-GaAs-Gao,75Alo.25As DHS with 
material constants (Adachi 1985) which are, for GaAs: 

= 10.90, o L ~  = 5.496 X 1013 s - ~ ,  w T ~  = 5.057 X 1013 s - ]  

and for Gao,7sAlo,zsAs 

&,2 = 10.22, 012 = 6.979 x i0l3 S - l ,  UT2 = 6.731 x ioi3 s- ' .  

We use m = 0.06624m0 for the conduction band mass of GaAs. 

4.1. Coupled intrasubband magnetoplasmon-phonons 

At first we discuss the dispersion of the coupled intrasubband magnetoplasmon-phonons 
using the long-wave approximation (37) of the polarization function and retaining only 
the term O(q/i). Within this approximation the dispersion relation (28) decribes the 
coupled (principal) magnetoplasmon-phonons. Higher roots, describing the Bernstein 
modes, do not occur. In figure 2 we have plotted the dispersion relations for three 
different values of the magnetic field. Due to the symmetry properties of the DHS the 
intrasubband magnetoplasmon wEp couples only to the LO phonons wL1 of the GaAs 
layer and to the symmetric interface phonons us*, but not to the antisymmetric one. 
The dispersion curve of the intrasubband magnetoplasmon uEp starts for 411 = 0 at w = 
U,. That means the magnetic field increases the electronic resonance frequency from 
w = 0 for B = 0 to w = w, for B # 0. If the cyclotron frequency w, lies below (figure 
2(a))  or between (figure 2(b))  the dispersion curves of the long-wave optical phonons, 
the dispersion curve of the intrasubband magnetoplasmon crosses these dispersion 
curves. Hence, resonance-split dispersion curves of the strongly coupled intrasubband 
magnetoplasmon-phonon modes occur. In the case that w, is larger than the optical 
phonon frequencies (figure 2(c) ) ,  the magnetoplasmon-phonon coupling is weak. 

The dispersion relation (28) with the long-wave form xf(q11, w) - O(qi )  contains 
many special cases. The coupled excitation: strict ZD magnetoplasmon-3~ LO phonon of 
the semiconductor v = 1 (Tselis and Quinn 1984b) is found from (28) by use of \q( .~)1~ = 
b(z )  in (22) and retaining only the contribution of 3~ LO phonons to VF;Oh(q,l, o), which 
is given by equation (34) if one replaces E , ~ ,  E , ~  and wL2 by E , , ,  E , ~  and uL1, respectively. 
In this case the dispersion relation is: 

In equation (45) wL1 and wT1 are the longitudinal and transverse (LO and TO) phonon 
frequencies and E , ~  and E , ~  are the optical and the static dielectric constant of the 
semiconductor material forming the layer of the DHS. The dispersion relation of the 2~ 
magnetoplasmons (Chaplik 1972) is given by 

wmp = (0; + w y 2  (46) 
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Figure 2. Dispersion relation of the coupled intra- 
subband magnetoplasmon-phonons of the 
GaAs-Gao ,5AI,, 2 5 A ~  DHS (full curves) using the 
polarization function xt(qI I ,  w )  - O(q7) for 
nZDEC = 1 x loi2 cm-', a = 20 nm and: (a)  w, = 

I 1 4 I 1 3 x-10i3 s-I; ( b )  w, = 6 x l O I 3  S - I ;  ( c )  w, = , ,  - 
0 5 10 15 20 8 x 10t3s-l. The dispersion relation of the 

uncoupled modes is given by the broken curves. q,, ( i o7  m-'1 

and 
O p  = [(n2DEGe2/2me0&%1 )411l 1/2 (47) 

is the 2D plasma frequency. For a Q2DEG in the presence of a perpendicular magnetic 
field the dispersion relation of Q ~ D  magnetoplasmons is found from (28) by neglecting 
the contribution from the phonons Vg(q11, w )  = 0 to be: 

= [(wP)2 + w : p  (48) 

w p  = [ ( n 2 D E G e 2 q ~ / / 2 m e " & ~ 1 ) ~ ( 4 1 1 ) 1 1 i 2 .  (49) 

with 

In equation (49)pm(411) is the form factor of the Coulomb interaction, which is given by 
the double integral in (22) for K 1  = K 2  = K 3  = K 4  = 0. The corresponding dispersion 
relation w+ of the strict 2~ magnetoplasmon-3~ LO phonon, which is derived using the 
full RPA expression of the polarization function (39) including only the transition from 
the Landau level N = 0 to N = 1, follows from (28) and (39) (Oji and MacDonald 1986b). 
It is found that the result is identical with (45) but herein 

w m p  = {U: + ~ c ( e 2 q ~ ~ / 2 ~ , ~ ~ l ~ J d  exP[-(G/2)qil)'/2 (50) 
is the RPA magnetoplasmon frequency. It can be seen that these special cases, which are 
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Figure3. Dispersion relation of the coupled intra- 
subband magnetoplasmon-phonons of the 
GaAs-Ga,, ??AI, 2 S A ~  DHS (full curves) using the 

nZDEG = 1 X 1012 cm-2. a = 20 nm and w, = 
polarization function xY(q11.0) - O(q7) for 

11 , 1 

obtained from our dispersion relation (28), are connected with the loss of important 
modes for the case of the DHS. But these simplifying assumptions are mostly used in the 
literature in order to get a closed analytical result. 

The next step of the investigation is to consider the dispersion relation (28) with the 
full long-wave form of the polarization function given in equation (37). In this case the 
dispersion relation also describes the lowest-order Bernstein mode. In figure 3 we have 
plotted the corresponding dispersion curves of the magnetoplasmon-phonons. The 
principal intrasubband magnetoplasmon mode starts for 411 = 0 at w = 0, whereas the 
lowest-order intrasubband Bernstein mode starts at w = 2w,. The principal mode 
couples to the Bernstein mode as well as to the symmetric optical phonon modes. It can 
be seen that the dispersion curve of the Bernstein mode is resonantly split with the 
higher frequency symmetric interface phonon mode us+ for the chosen value of the 
parameters. The dispersion curve of the intrasubband magnetoplasmon vanishes at 
411 = 20 x 10' m-'. The collapse of the mode for large wavevectors is originated by the 
long-wave approximation of the polarization function used in the calculation and not by 
any physical reason. This can be seen by considering the RPA expression (39) of the 
polarization function. Expanding the exponential function in a power series, this series 
consists of terms with alternating signs. Hence, if one were to include all terms in 
this series and then calculate the dispersion curves, this collapse would not occur. 
Nevertheless, in most experimental situations the possible wavevector region is restric- 
ted to 411 s 5 x lo7 m-l and, therefore, the long-wave approximation used gives appro- 
priate results. 

In figure 4 we have plotted the dispersion curves equivalent to figure 3 but dependent 
on the magnetic field. For low values of the magnetic field all modes are almost 
uncoupled. At B = 4 T a strong interaction between the principal magnetoplasmon 
w& and the Bernstein mode wr l  takes place, resulting in resonant splitting. For higher 
magnetic fields ( B  = 10-14 T )  the dispersion curve of the Bernstein mode and that of 
the principal magnetoplasmon ( B  = 18-25 T )  cross the dispersion curves of the optical 
phonons. It can be seen that the coupling with phonons is stronger for the principal mode 
than for the Bernstein mode. 
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Figure 4. Dispersion relation of the coupled intrasubband magnetoplasmon-phonons of the 
GaAs-Ga, 7jAlo zsAs DHS (full curves) using the polarization function ,y:(ql,, 0) - O(9d) for 
n2DEG = 1 x lo’? cm-2, a = 20 nm and 911 = 2 X lo7 m-’.  The dispersion relation of the 
uncoupled modes is given by the broken curves. 

The interaction of the principal mode with the first Bernstein mode was experi- 
mentally investigated by Batke et a1 (1985) with far infrared transmission spectroscopy 
on GaAs-Gal -,Al,As heterostructures. The results obtained here agree qualitatively 
very well with the experiment. It was found that the strength of this non-local interaction 
is given by the parameter (q11+/wc)2. It is possible to rearrange the polarization function 
(37) to give the dependence on the parameter (q11uF/wc)2: 

The result obtained here for the interaction between both modes also corresponds to 
that of Chaplik and Heitmann (1985), who calculated the absorption of an electric field 
by strict 2~ magnetoplasmons using the classical kinetic theory. 

The dispersion relation (28) with the full long-wave form of the polarization function 
(37) contains many special cases. If we neglect the contribution from the long-wave 
optical phonons by setting V&:(q11, o) = 0 the dispersion relation of Q2D magneto- 
plasmons follows: 

The (-) mode is the principal intrasubband magnetoplasmon oEp (also called in gas 
plasma physics an upper hybrid mode) and the (+) mode is the intrasubband Bernstein 
mode copl. Both modes are coupled. The principal magnetoplasmon 
oEp = [(or)* + wf]1/2 is degenerated with the higher resonance at o = 20,  yielding: 

For values 411 < qli the dispersion relation (52) falls into two separate parts. For the 
principal magnetoplasmon: 

W z p k  = (t[I[5wf f ( W Y ) > ’ ]  ? { [ 3 W :  - ((c)p)2]2 + 6 n 2 ~ ~ ~ ~ l t q i j ( o F o ~ ) ~ } ~ ’ ~ n ) ~ ’ ~ .  (52) 

q1f = 6 m E o E , 1 W f / n 2 D E G e 2 f ~ ( q I T  1. (53) 

where the last term in the root of (52) is a non-local correction to the mode oFp. The 
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Bernstein mode dispersion is given in this case by: 

The corresponding relations in the strict ?D case follow from (52) to ( 5 5 )  replacing only 
wEp, w p  andfb by wmP, wp and 1: respectively. The equations (54) and (55 )  give good 
results also for the real system if 411 < q1r and the frequencies of the magnetoplasmon 
modes are very different from those of the optical phonons. Because 411 q( means very 
small values of the wavevector or large values of the magnetic field, it is important to 
know the validity of the equations (54) and (55 )  in comparison to the frequencies of the 
optical phonons. If the dispersion curves are well described by (54) and (55) above the 
dispersion curves of the optical phonons, then the corresponding dielectric constant of 
the background is E , ~ .  But in the other case, if the dispersion curves are well described 
by (54) and (55) far below the dispersion curvesof the optical phonons, the corresponding 
dielectric constant of the background is E , ~ ,  the static dielectric constant. If one replaces 
E,, by in (54) and (55) the contribution of the optical phonons is included by the E ,  
approximation. 

4.2.  Coupled intersubband magnetoplasmon-phonons 

In this subsection we discuss the (1-0) coupled intersubband magnetoplasmon-phonons. 
As in the case of the intrasubband modes we want to start our analysis using the long- 
wave approximation (43) of the polarization function for which we retain only the terms 
-O(qi). Within this approximation the dispersion relation (28) describes the coupled 
principal magnetoplasmon-phonons as well as the first Bernstein mode. In figure 5 we 
have plotted the dispersion relation for three different values of the magnetic field. 

Due to the symmetry properties of the DHS the (1-0) intersubband magnetoplas- 
mons-both the principal mode cogp and the Bernstein modes oL!.--couple only to the 
LO phonons wL1 of the GaAs layer and to the antisymmetric interface phonons but 
not to the symmetric one. There are three magnetoplasmon modes 
wgp ,  wLol+ and wLol-. The principal mode wgp starts for 911 = 0 at a frequency above the 
subband separation frequency Qlo, because of the depolarization shift. This is due to 
the resonance screening. But the first Bernstein modes start for 411 = 0 at wA:. = 
IQ 5 w,I (see equation (67) later). Following this, the Bernstein modes are not shifted 
by depolarization effects. The dispersion curve of the intersubband principal mag- 
netoplasmon modes depends only weakly on the strength of the magnetic field, whereas 
the dependence is strong for the intersubband Bernstein modes. This can be seen by 
comparing figures 5(a) to (c). For the three chosen values of the magnetic field only the 
principal mode w z p  crosses the dispersion curves of the optical phonon modes, yielding 
resonance-split dispersion curves (figure 5(a)). The fact that the dispersion curve at w, = 
3 x 1013 s-l forms a closed loop and at higher magnetic fields shows a 'reasonable' 
behaviour is due to the approximation used for the polarization function xy(ql1, w )  in 
calculating the dispersion relation. Because the long-wave approximation (43) is essen- 
tially a power series expansion in the parameter (q1110)2 - qi//B, the dispersion curves at 
low magnetic fields are correct only at low wavevectors. In the case of 0, = 3 x 1013 s-' 
and for a wavevector of 411 = 2 X lo7 m-l, realizable in experiments, the parameter is 
( q ~ l ~ ) ~  = 0.024 and for 411 = 5 X lo7 m-' this parameter is 0.15. Hence, in the small 
wavevector region (411 S 5 X lo7 m-I) the calculated dispersion curves of figures 5(a)- 
(c) are of sufficient accuracy. 
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Figure 5. Dispersion relation of the coupled 
intersubband magnetoplasmon-phonons of the 
GaAs-Ga,, 75Alo Z S A ~  DHS (full curves) using the 
polarization function xy(q11, w )  - O(qi)  for 
n2DEo = 1 x 10" a = 20 nm and: (a )  w, = 
3 x 10" s - ' ;  (b)  w, = 6 x loi3 s-I; (c) w, = 
8 X 10'3ss-'. The dispersion relation of the 
uncoupled modes is given by the broken curves. 

If we expand V;C, (411) (equation (22 ) )  in a power series of 411 according to: 

with 
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we can derive an explicit dispersion relation for the (1-0) intersubband magnetoplasmon 
in the absence of optical phonons. Using xy(q11, w )  - O(q1l) and Vyl(qll) - O(q11) in the 
dispersion relation (28) with Vp:(qll, w )  = 0 the dispersion relation (28) reads: 

= [(I + all)Q:o - P11Q:oQII + o(qT)11'2* (60) 

This is the same result as in the case with no magnetic field (see for instance equation 
(65) of Wendler and Pechstedt 1987b). It is important to note that the magnetic field 
only affects the terms higher than O(q11). This explains the weak dependence of the 
principal intersubband magnetoplasmon on the magnetic field. Within this approxi- 
mation (x; - O(qli), V;, - O(q11)) it is also possible to calculate the dispersion relation 
of the coupled excitations for the special case of the principal intersubband mag- 
netoplasmon-3~ LO phonon coupling in explicit form. Using the vertex function 
Mk,(q l l )  of the 3~ LO phonons one immediately obtains from (21) and (56): 

This very restrictive approximation (3D LO phonons), in comparison to the treatment 
used here, is most commonly used, if dynamical phonon effects on the intersubband 
magnetoplasmons are investigated (Tselis and Quinn 1984b). 

The next term in the long-wave approximation of the explicit dispersion curve of the 
(1-0) intersubband magnetoplasmons is found if we use (56) and #(qII, w )  - O(qi )  in 
(28) for V$(qll, U )  = 0. Using this approximation we found, for the dispersion curves 
of the (1-0) principal intersubband magnetoplasmon and for the first (1-0) Bernstein 
modes, the following explicit dispersion relations: 

From these dispersion curves it is simply possible to obtain the limits: 
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In the next step of the investigation of the (1-0) intersubband modes we consider the 
dispersion relation (28) with the full long-wave form of the polarization function given 
in (43). The corresponding dispersion curves are plotted in figure 6. 

In this case the spectrum of the (1-0) intersubband magnetoplasmons consists of the 
principal mode mEp and of four Bernstein modes, the first Bernstein modes mLoli and 
the second one, U&. Due to the coupling between these five magnetoplasmons their 
dispersion curves are altered in comparison to those in figure 5(a). In particular, the 
modes and mi',+ have dispersion curves forming a loop. But it seems that this 
collapse has no deeper physical reason, since it is caused by the approximate form of the 
polarization function (43). Because (43) is valid only for small values of the parameter 
(qllo)2, the dispersion curves are only correct in the region 411 6 5 X 10' m-', which is the 
most interesting one for experiments on magnetoplasmons. From this discussion one 
can see the important fact that, due to the very rich resonance structure of the spectrum 
and the strong coupling of the different modes, the theoretical results depend very 
sensitively on the approximation used. Our calculations show that a sufficiently correct 
description of the magnetoplasmons demands the use of good approximations for the 
polarization function. This is a problem because for the full RPA expression of the 
polarization function it is not possible to calculate an explicit analytic expression. 
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Figure 7. Dispersion relation of the coupled intersubband magnetoplasmon-phonons of the 
GaAs-Ga,, ,5Al, zrAs DHS (full curves) using the polarization function xY(ql1, w) - O(qf )  for 

= 1 x 10" cm-', a = 20 nm and 411 = 2 x lo's- ' .  The dispersion relation of the 
uncoupled modes is given by the broken curves. 

In figure 7 we have plotted the dispersion curves equivalent to those of figure 6 but 
dependent on the magnetic field. This figure shows the rich resonance structure. It is to 
be seen that the three modes w,!&, uL"~+ and wL\+ lie above the dispersion curves of the 
optical phonons for all strengths of the magnetic field. The dispersion curves of these 
modes cross each other at certain magnetic fields yielding the resonance splitting shown. 
The two lower frequency (1-0) intersubband Bernstein modes cross the dispersion 
curves wL1 and wA- at low values of the magnetic field. At higher magnetic fields these 
modes tend to go to zero frequency. But the dispersion curves uLol- and wL\- are 
'reflected' at w = 0 because the resonances in (43) are of the form w = I Q l o  - w,I and w = 
IQ,; - 2w,/. The result is firstly the crossing of dispersion curves of the magnetoplasmons 
between each other; and secondly, the crossing of these dispersion curves with those of 
the optical phonons and of the principal mode ugp at higher magnetic fields. Therefore 
the relatively complicated figure of dispersion curves arises. 

To our knowledge, up to now no experimental investigations of the intersubband 
magnetoplasmons have been made. 

5. Concluding remarks 

In this paper we have presented a detailed survey of the magnetoplasmons in semi- 
conductor quantum wells, including the effect of electron-phonon coupling. It is shown 
that the principal intra- and intersubband magnetoplasmons, the intra- and inter- 
subband Bernstein modes, the LO phonons and the interface phonons form a coupled 
set of modes. 

The polarization function of the Q ~ D  magnetoplasmons is calculated in RPA. A 
detailed discussion of the polarization function shows that Landau damping is impossible 
for quantizing magnetic fields. Following this, the coupled magnetoplasmon-phonons 
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are free of Landau damping. This result follows from the unusual ground-state properties 
of a QZDEG in a perpendicular quantizing magnetic field. Under such conditions, a 
completely quantized situation arises fer which each energetic level is macroscopically 
degenerated. Besides the full RPA polarization function we have calculated and discussed 
different long-wave approximations. In this paper we generalize earlier papers on 
magnetoplasmons in quantum wells in three ways: 

(i) taking into account the finite thickness of the electron system perpendicular to 

(ii) including the complete set of long-wavelength optic phonons, i.e. LO and 

(iii) using the RPA polarization function of the Q ~ D  magnetoplasma, including the 

the heterointerfaces; 

interface phonons; 

higher resonances. 

The effect of the finite thickness of the electron system on the collective excitations is 
twofold. Firstly the dispersion curve of the intrasubband magnetoplasmon is shifted to 
lower frequencies and secondly the intersubband magnetoplasmons arise. Following 
this, neglecting the finite thickness of the electron system, as occurs in most papers, e.g. 
Chiu and Quinn (1974), MacDonald (1985) and Oji and MacDonald (1986a), only gives 
good results for the intrasubband modes in the long-wavelength limit. But in this limit 
(41, = V % T w / c ,  where c denotes the speed of light in a vacuum) retardation effects will 
become important (Chiu and Quinn 1974, Wendler and Kandler 1989). We note that all 
results of this paper are valid in the unretarded limit 411 9 G u / c .  

Besides the inclusion of the finite thickness of the electron system, we include for the 
first time the higher resonances of the magnetoplasma, the Bernstein modes, as well as 
the LO and the interface phonons. Because of the very complex resonance structure of 
the magnetoplasmon-phonon system in quantum wells the calculated dispersion curves 
strongly depend on the approximation of the polarization function used. In this paper 
we use the RPA. For the case that only one Landau level is filled a closed analytic 
expression can be derived. Because of the large effects of the size-quantization on the 
collective modes, its neglect in the work of Horing and Yildiz (1986) is only a good 
approximation for very large thicknesses of the quantum well (a  9 ilo, where A. is the 
de Broglie wavelength). 

Up  to now the spectrum of the magnetoplasmon-phonons in quantum wells has not 
been well investigated experimentally. There exist only experiments on the intrasubband 
principal magnetoplasmon and its interaction with the first Bernstein mode (Batke et a1 
1985). The intersubband modes as well as the coupling of the modes to the optical 
phonons of the system is an open field for experiment. Possible problems for experiment 
are the complex resonance structure and the very low oscillator strength of the higher 
resonances of the magnetoplasma (Mermin and Cane1 1964). 

Appendix 

In the following we outline the calculation of the polarization function of the quasi-two- 
dimensional electron gas in the presence of a perpendicular magnetic field. According 
to equation (18) we have: 
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with the associated Laguerre polynomial defined by: 

which gives 

N (N  + S)! N 

E m .  

Using (A3) in (Al) and expanding (Al)  in a power series of the parameter (l;qi/2) gives 
the following: 

For the calculation of the sum of N and S in the polarization function (16) we use the 
properties of the electric quantum limit for T = 0 K 

1 f o r K = O a n d N < N  

nF(gKN) = 0 for K = 0 and N > N (A51 1 0 for K > O  

where N is the energetic highest Landau level which is occupied. According to the 

These two sums are necessary for the calculation of xt(ql1, 0). To calculate xi(ql l ,  o) 
we use the following sums: 
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